
IPME and external clients:
Enhancing simulation performance by delegating workload to
external clients; explaining and simplifying the process

Phil ter Haar

Brad Cain

Defence R&D Canada
Technical Memorandum

DRDC Toronto TM 2007-033

December 2007

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

DEFENCE DÉFENSE
&

IPME and external clients:
Enhancing simulation performance by delegating workload to
external clients; explaining and simplifying the process

Phil ter Haar

Brad Cain

Defence R&D Canada – Toronto
Technical Memorandum
DRDC Toronto TM 2007-033
December 2007

Principal Author

Original signed by Phil ter Haar

Phil ter Haar

Research Technologist

 Approved by

Original signed by Keith Niall

Keith Niall

Acting Head, Human Systems Integration Section

Approved for release by

Original signed by K. C. Wulterkens

K. C. Wulterkens

for Chair, Document Review and Library Committee

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2007

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2007

DRDC Toronto TM 2007-033 i

Abstract ……..

The speed of simulation execution as performed by the Integrated Performance Modelling
Environment (IPME) degrades significantly when computationally demanding functions, such as
iterative mathematical calculations, are included in a model. Much of this degradation can be
mitigated by transferring those functions that require significant computational resources (cpu
processing) to an external client using the external client architecture that accompanies IPME.
This client communicates with IPME using TCP/IP network protocol, exchanging values of
common variables over the network. Using an external client allows more processing power to be
dedicated to computationally expensive tasks and are generally more robust to increases in
computational demand. A computationally demanding sample client is used to show the
execution performance differences when the procedure resides within the IPME task network and
when it is offloaded to an external client. This report also outlines how to use the sample client
source code to build a client program, extending the developer’s approach for client program
development to create a more flexible interface. This will provide another option for client
developers who may prefer a more intuitive template for developing their customized client than
the sample client provided with IPME.

Résumé ….....

Les performances de l’environnement intégré de modélisation des performances (EIMP) se
dégradent considérablement lorsque des fonctions exigeant beaucoup de puissance de calcul sont
intégrées dans un modèle. Cette dégradation peut être atténuée considérablement en transférant la
fonction exigeant beaucoup de puissance à un client externe qui utilise l’architecture de client
externe connexe à l’EIMP. Ce client communique avec l’EIMP au moyen du protocole réseau
TCP/IP, échangeant ainsi des valeurs de variables partagées par le réseau. L’utilisation d’un client
externe permet de réserver plus de puissance de traitement à la tâche exigeant beaucoup de
puissance de calcul. Cela permet aussi de mieux répondre aux augmentations de la demande
visant ces tâches. Un exemple de client exigeant beaucoup de puissance est utilisé pour faire la
démonstration de la différence sur le plan des performances à l’exécution entre une procédure
résidant dans le réseau d’exécution de tâche de l’environnement EIMP et la même procédure
transférée à un client externe. Ce rapport décrit aussi comment utiliser le code source de
l’exemple de client pour produire un programme client, ce qui étend la portée de la démarche du
développeur en matière de développement de programmes clients afin de pouvoir créer une
interface plus souple.

ii DRDC Toronto TM 2007-033

This page intentionally left blank.

DRDC Toronto TM 2007-033 iii

Executive summary

IPME and external clients: Enhancing simulation performance by
delegating workload to external clients; explaining and
simplifying the process

[Phil ter Haar; Brad Cain]; DRDC Toronto TM 2007-033; Defence R&D Canada –
Toronto; December 2007.

Introduction: The Integrated Performance Modelling Environment (IPME) is a network
simulation software package for building models that simulate human and system performance
(anonymous, 2004). Though well equipped with tools and utilities that allow for great fidelity in
discrete event modelling, version 3 of IPME is limited in its capability to perform large amounts
of computations at a speed fast enough to suit the requirements of some applications. Fortunately,
IPME is designed to interface with external programs at runtime, allowing custom routines to be
added in a modular manner, independent of the IPME model. It is the purpose of this
investigation to compare the performance of a computationally intensive model across two
architectural configurations; 1) with the demanding procedure embedded within IPME
(standalone condition) versus 2) hosting the same demanding procedure outside IPME using an
external client (with-client condition). By running trials of increasing computational workload we
expect to see a trend of superior performance in the with-client condition as the workload
intensity increases. Any increased effeciencies related to the with-client condition can be
attributed to the superior processing abilities of external pre-compiled programs relative to
IPME’s internal code execution with is interpreted at run-time.

The steps to create a client program are discussed, based on a sample client program that is
packaged with the IPME software. The typical approach to building a customized client program
is to start from this code but changes to clients typically require recompiling the client program.
In some cases, it is only the exchanged variables that differ among applications and the structure
of the client code remains unchanged. A programming approach called the ‘Client Function
Module’ (CFM) has been developed to extend the versatility of external IPME clients by using
parameter files, eliminating the need to recompile. This technique does not provide increased
performance or efficiency rather it provides a modular framework that allows a programmer to
remain organized and modify only the parts of the code that are necessary. The client used in this
report demonstrates this approach.

Results: Relocating the computationally demanding procedure to an external client resulted in a
substantial enhancement of performance in the IPME simulation, showing from one to two orders
of magnitude improvement in execution speed. Not only was the overall performance better using
the ‘with-client’ configuration, but it was also found that the external client was less sensitive to
increases in computational demand than when the code was embedded in IPME..

Significance: IPME modellers can improve the performance of their simulations by moving
computationally internal procedures to external clients to reduce overall execution time,
achieving real time or faster than real time execution. This will allow more complex models of
human performance to be executed with reduced time demands, extending the capability to

iv DRDC Toronto TM 2007-033

predict human-system performance in greater detail or of greater scope. As systems become more
complex, testing by simulation will become increasingly important to ensure that the desired
performance is achieved. Clients provide a mechanism to support this activity.

Future plans: IPME version 4 is being developed and should be more computationally powerful
and robust to workload increases. While the role of external clients as performance enhancers
decrease, they will continue to lend support in a capacity of providing modular functionality to
IPME models. The CFM approach can be improved in terms of compilation. The
ipme_interface.c is currently compiled along with the CFM code, but it need not be. Future
development could see it compiled into a library that is simply linked to the customized CFM
module, serving its IPME interfacing needs.

DRDC Toronto TM 2007-033 v

Sommaire

Amélioration des performances par délestage de la charge de
travail à des clients externes : explication et simplification du
processus

[Phil ter Haar; Brad Cain]; DRDC Toronto TM 2007-033; R & D pour la défense
Canada – Toronto; Décembre 2007.

Introduction ou contexte : L’environnement intégré de modélisation des performances (EIMP)
est un ensemble de logiciels de simulation réseau utilisé afin de développer des modèles qui
simulent les activités des personnes et des systèmes (anonyme, 2004). Bien qu’elle soit bien
pourvue en outils et en utilitaires permettant la réalisation de modélisations d’événements discrets
d’une grande fidélité, la version 3 de l’EIMP est limitée sur le plan de l’exécution de grandes
quantités de calculs à une vitesse suffisante pour répondre aux besoins de certaines applications.
Heureusement, l’EIMP est conçu afin de pouvoir être interfacé avec des programmes externes
pendant son exécution, ce qui permet l’ajout de sous-programmes sous forme modulaire,
indépendamment du modèle EIMP. La présente étude vise à comparer les performances d’un
modèle exigeant beaucoup de calcul et intégrant la procédure lourde dans l’EIMP (état autonome)
avec le même modèle dont la procédure lourde serait intégrée à un client externe. En effectuant
des essais avec des charges de travail de calcul croissantes, nous nous attendons à relever une
tendance vers l’obtention de performances supérieures au moyen du modèle avec client,
performances qui augmenteront avec la croissance de la charge de travail.

Les étapes de création d’un programme client qui sont décrites portent sur un exemple de
programme client qui est distribué avec l’EIMP. La démarche habituelle de construction d’un
programme client consiste à commencer par le développement de ce code, mais les changements
que l’on souhaite apporter au client exigent habituellement de recompiler le client. Dans certains
cas, ce sont seulement les variables échangées qui diffèrent d’un programme à l’autre et la
structure du code demeure inchangée. Une procédure de programmation, fondée sur le « module
de fonction client » (CFM en anglais), a été élaborée afin d’accroître la versatilité des clients
EIMP externes en ayant recours à des fichiers de paramètres, ce qui élimine le besoin de
recompiler. Cette technique n’améliore pas les performances ou l’efficience, mais elle constitue
un cadre permettant à un programmeur de rester ordonné et de modifier seulement les parties du
code requises. Le client utilisé dans le présent rapport relève de cette approche.

Résultats : La relocalisation d’une procédure exigeant beaucoup de puissance de calcul à un
client externe a permis d’obtenir une amélioration considérable des performances de la simulation
en environnement EIMP. On a ainsi obtenu une accélération de la vitesse d’exécution de un à
deux ordres de grandeur. Non seulement la performance d’ensemble a-t-elle été améliorée au
moyen de la version « avec client », mais on a aussi remarqué que le client était moins
sensible aux augmentations de la demande de calcul que lorsque le code était intégré à
l’environnement EIMP.

Importance : Les modélisateurs qui utilisent EIMP peuvent améliorer la performance de leurs
simulations en déplaçant les procédures exigeant du calcul à des clients externes afin de réduire le

vi DRDC Toronto TM 2007-033

temps d’exécution d’ensemble, atteignant ainsi des vitesses d’exécution égalant le temps réel ou
plus rapides que le temps réel. Cela permettra de réaliser des modèles de performances humaines
plus complexes, mais exigeant moins de temps, ce qui accroîtra la capacité de prévoir les
performances des ensembles humain-système plus en détail, avec une plus grande portée. À
mesure que les systèmes se complexifient, il devient de plus en plus important d’effectuer des
essais par simulation afin de vérifier que l’on obtient les performances voulues. Le recours aux
clients aide à la réalisation de cette activité.

Perspectives : La version 4 de l’EIMP est en cours de développement et elle devrait être plus
puissante sur le plan de la capacité de calcul et plus résistante à l’augmentation de la charge de
travail. Bien que le rôle des clients externes à titre de dispositif améliorant les performances ira en
diminuant, ils continueront d’aider à assurer la modularité des modèles de l’EIMP. La démarche
qui fait appel au module de fonction client peut être améliorée sur le plan de la compilation.
L’interface EIMP est actuellement compilée avec le code du module de fonction client, mais cela
n’est pas essentiel. Le développement futur pourrait la voir compilée dans une bibliothèque qui
est simplement liée au module de fonction client personnalisé, répondant ainsi au besoin qu’il soit
interfacé avec l’EIMP.

DRDC Toronto TM 2007-033 vii

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary .. iii
Sommaire .. v
Table of contents ... vii
List of figures ... ix
List of tables .. x
1 IPME and the external client .. 1
2 IPME client socket communication .. 2

2.1 IPME sample client ... 2
2.1.1 Overview... 2
2.1.2 The code.. 3
2.1.3 Shared variables .. 3
2.1.4 Incoming variables .. 3
2.1.5 Outgoing variables .. 4

2.2 Timing parameters... 4
2.2.1 Configuring client event timing .. 4

2.2.1.1 Client timing variables.. 5
2.2.1.2 Simple example .. 5
2.2.1.3 Complex example 1 .. 6
2.2.1.4 Complex example 2 .. 7
2.2.1.5 Complex example 3 .. 7
2.2.1.6 Conclusion.. 8

2.3 A generic external client interface... 8
2.3.1 The issue ... 8
2.3.2 A solution.. 9

2.3.2.1 CFM function descriptions ... 9
3 Performance enhancements using clients ... 12

3.1 Overview ... 12
3.2 Setting up the ‘standalone’ mode .. 12
3.3 Setting up the ‘with-client’ mode .. 13
3.4 Experimental design .. 16
3.5 Results ... 16

4 Conclusion .. 21
References. .. 22

A.1 IPME user defined integration function .. 23

viii DRDC Toronto TM 2007-033

A.2 Listing of the cfm client code that performs the variable integration.......................... 27
A.2.1 ipme_interface.c: The module responsible for passing exchange vars with

IPME ... 27
A.2.2 simon_integrator.c: The cfm module that processes exchange variables...... 35
A.2.3 cfm.h: the cfm specific header file where generic client information is

defined... 45
A.2.4 simon_integrator.h: header file for the client-specific functions 45
A.2.5 params.txt:... 46
A.2.6 Sharedvars.txt: demonstrating the processing of one IVAR 47
A.2.7 List of abbreviations.. 48

Distribution list ... 49

DRDC Toronto TM 2007-033 ix

List of figures

Figure 1. Standalone configuration performance .. 18
Figure 2. With-client configuration performance.. 18
Figure 3. Execution time for selected conditions as a function of the number of IVARs

included in the integration routine plotted on a log scale.. 19
Figure 4. Execution time for selected conditions as a function of WINDUR in the integration

routine, plotted on a log scale.. 20

x DRDC Toronto TM 2007-033

List of tables

Table 1. Client-side timing variable values - simple example... 6
Table 2. Client-side timing variable values – complex example 1.. 6
Table 3. Client-side timing variable values – complex example 2.. 7
Table 4. Client-side timing variable values – complex example 3.. 8
Table 5. Sample Params.txt file contents. The columns are: variable name, variable type,

initial value.. 11
Table 6. Sample sharedvars.txt file based on one IVAR .. 13
Table 7. Setup of the params.txt file for the integration client for communications

starting at 0.25 sec, repeating every 0.25 sec, using INTERVAL_HUNDREDTH.
Only the first element of the first 4 lines of this file are read. Task specific notes
may follow the entries on or after the first four lines.. 14

Table 8. Comparison of IPME simulation execution times (in seconds) 16
Table 9. Range of execution times across IVAR intervals (in seconds) 20

DRDC Toronto TM 2007-033 1

1 IPME and the external client

The Integrated Performance Modelling Environment (IPME) is a discrete event simulation
software modelling environment that seeks to represent human behaviour in complex systems.
IPME is developed and maintained by Micro Analysis & Design in Boulder, Colorado, U.S.A. It
was developed as a tool for building models that simulate human and system performance.
Amongst many other features, IPME contains tools for determining workload and the effects of
performance shaping functions on operators.

In addition to serving as a standalone simulation suite, IPME provides mechanisms for interfacing
with external models or simulations. One common use for such capability is the transfer of
computationally intensive routines from the IPME task network to an external program that has
been built to shoulder specific aspects of the simulations workload. The resulting architecture
provides the benefit of functional modularity and enhanced performance. A block of code that is
included in a precompiled external client will execute much faster than if it were embedded in
IPME, where it will be interpreted at runtime. Given that the performance enhancement
achieved by using an external client exceeds the slight overhead that accompanies the use of
TCP/IP sockets, this approach is a favourable one for users who are interested in minimizing
execution time.

This report additionally describes how the timing of client-server communication occurs with
IPME clients to clarify client design as this has been found to be a conceptually difficult area.
Several examples are presented to provide client programmers with insight from lessons learned.
The execution time of a computationally expensive, embedded IPME function is then compared
with a similar client implementation, integrating a signal over a window in time to return an
average value.

2 DRDC Toronto TM 2007-033

2 IPME client socket communication

IPME is able to play the role of both parties in the client-server relationship. Most practical
applications, including all examples used in this document, implement IPME as the server to
external client applications. Similarly, most external clients developed and implemented at DRDC
have been written in C and compiled for Linux using the GNU Compiler Collection (GCC).

To implement communication with a server, the client will notify the IPME server of the time of
the next communication event, which becomes a registered event in the IPME event queue. Upon
reaching the time designated for the next client communication event, the IPME server initiates
the event and starts the communication process with the client.

During a client-aided simulation there are three main phases of client-server communication:
Registration, Event Processing and Termination.

• Registration: The client identifies itself, provides names of exchange variables and any
initial values that the client will be setting, and inserts the first client event into the IPME
event queue.

• Event Processing: Triggered repeatedly at an interval specified in the client, each event
sends the current values of those exchange variables whose value has changed since the
previous event from IPME to the client. The client performs any operations
implemented by the programmer, and finally passes the values of desired return variables
back to the IPME server.

• Termination: At any point, either client or server can terminate the communication between
them. As IPME can communicate with multiple clients simultaneously, it is important to
note that terminating one client-server communication does not affect the status of any other
client-server communications.

2.1 IPME sample client

2.1.1 Overview

The IPME client presented here is a customized extension of the sample IPME client provided by
the manufacturer. The client uses TCP/IP sockets to exchange values of shared variables that have
been updated since the last communication event; variables that have not changed since the last
event are not exchanged. IPME uses port 2000 by default for the bidirectional communication but
others will work. By default, the IPME server sets the initial values of the shared variables, but
the client has the opportunity to overwrite these values during the initial registration process. The
client enters the times of its first and subsequent events into the IPME simulation server’s event
queue during the initialization. The IPME simulation clock does not advance during a
communication event between IPME and a client until the entire event is complete.

It is good practice to assign control of each variable to only one application, although many may
use its value. Thus, if a client application assigns values to a variable, say the operator body

DRDC Toronto TM 2007-033 3

temperature from a thermal physiology client, then no other client or IPME should modify that
variable, otherwise instabilities may occur.

2.1.2 The code

The sample IPME client code is written in the C programming language and the files are placed
in the `models/CommTest/CClient/` directory of every IPME 3.x installation. The essential files
required for compilation are client.c (or any .c file containing the main method),
common_lib.c, client_lib.c, IPME_sockets.h and variableTypes.h. A Java
sample client is also available.

2.1.3 Shared variables

All variables that need to be exchanged between IPME and its client must be defined by both
sides. In IPME variables may be defined as global variables in the ‘Define Variables/User’
dialogue, as operator traits or states in the crew model, or as environment variables in the
environment model. In the client, variables are defined by building a variable table (vars) that
specifies the name, type and initial value (only used if client is chosen to initialize variable
values) of the shared variables. The data type ‘Variable’ is a structure defined in
‘IPME_sockets.h’. The variable names and types in both IPME and the client must be identical.
An example of the client variable definition is given in Code Snippet 1 below.

Code Snippet 1. Defining 5 Client-side Shared Variables

char values[5][25] = {"11", "2", "2", "2", "2"};

Variable vars[5] = {{"client_var_1",INT_TYPE, values[0]},

 {"client_var_2",INT_TYPE, values[1]},
 {"server_var",INT_TYPE, values[2]},

{"Threat.env_var",INT_TYPE, values[3]},
{"Operator1.oprVar.Value",INT_TYPE, values[4]}};

(1)

The above code snippet demonstrates the definition of 5 shared variables. In this example, the
first two the variables will be modified by the client, the third will be modified by IPME as a
global variable, the fourth is an IPME environment variable and the last is an IPME
operator state or trait.

2.1.4 Incoming variables

Once the IPME server reaches the time of the next External Client Event in the event queue, it
sends the values of each shared variable that has a different value than it had after the previous
exchange. The client receives these inbound variables from the server by populating a temporary
table (tmp_table). This temporary table is assessed and all the values of the updated variables that
arrived from the server are identified and can be dealt with as the client program requires. The
following code snippet assigns incoming variable values to their vars table counterpart, although

4 DRDC Toronto TM 2007-033

additional operations may be performed if desired. Incoming variable values will commonly be
copied to local client variables, or passed into user defined client functions at this point.

Code Snippet 2.: Dealing with Incoming Exchange Variables

 Variable_table tmp_table = NULL;
. . .

 /* get current values for interested variables */
 tmp_table = recv_variables(&num_vars, socket);

. . .
 /* process variables */
 for(i = 0; i < num_vars; i++)
 {
 tmp_table[i].value = (char *) ((int) tmp_table[i].value);
 strcpy (vars[i].value, tmp_table[i].value);
 }

(2)

2.1.5 Outgoing variables

After the client has performed the desired operation using the incoming variables, it is likely that
some variables will have new values to send back to IPME. When the client changes an exchange
variable’s value, it must update the value of the vars table with the updated value and change the
vars.changed flag to true. All exchange variables flagged as having been changed will be sent
from the client to IPME and their values will be applied to the corresponding variables.
Additionally, the next External Client Event is scheduled in the IPME event queue. Once this is
completed, the IPME simulation will resume and proceed internally until the next External Client
Event time is reached.

2.2 Timing parameters

2.2.1 Configuring client event timing

When designing an IPME model, the analyst selects a time interval to correspond to the
simulation clock time that is appropriate for the model. For example, modelling the tasks
involved with building the pyramids, 1.0 unit of the simulation clock may represent 1 day while
10 ms may be more suited to 1 simulated time unit in a model of cognitive activity and physical
response to a stimulus. When approaching the configuration of the external client’s timing, one
must do so in line with their model’s paradigm. Two questions that are central to designing the
client interface are: What are my units of time? How frequently do I need to exchange
information with my external client?

DRDC Toronto TM 2007-033 5

2.2.1.1 Client timing variables

There are several parameters that combine to dictate the exact timing of client-sever events. All
three are specified in the client code:

• eventtime: A long int variable. The simulation time that, when reached by the IPME server,
will trigger the initial communication event with this client. This is an integer value that is
modified by the prescribed time units defined below.

• nexttime: A long int variable. This integer value is modified by the units defined in the
following variable (INTERVAL_*) to specify the interval between all subsequent
communication events with this client.

• INTERVAL_*: An int variable, one of enum (INTERVAL_HOUR,
INTERVAL_MINUTE, INTERVAL_SEC, INTERVAL_TENTH,
INTERVAL_HUNDREDTH, INTERVAL_HUNDREDTH). This variable modifies the
value of the eventtime and nexttime variables, influencing the way they are applied against
the IPME server’s simulation clock when scheduling events in the event queue. The
INTERVAL refers to one whole number unit of simulation time where it is implicit that the
default simulation time unit is one second.

Putting it all together, if we assume that the current simulation clock time is 10.0, and nexttime
is 1, using INTERVAL_SEC will result in the next client event being scheduled for 11.0 by the
IPME server. However, if INTERVAL_TENTH were to be specified by the client, the nexttime
would be treated at one-tenth of a time unit, and thus the next event would be scheduled for
time 10.1 in the event queue. Similarly, one INTERVAL_MINUTE would result in the next
communication occurring at 70.0 simulation time units, and 3610.0 if INTERVAL_HOUR
were used.

2.2.1.2 Simple example

Consider an example where a model is built using the paradigm that one IPME simulation time
unit is equal to one second. The designer requires the feedback of an external client four times a
second (every 250 ms). To achieve this, one can apply the following formula to determine the
fractional value of each simulation time unit (one second for our current paradigm):

1.0 (simulation time unit, or second) / 4 (equal components, or 250 ms blocks per second)
= 0.25s or 25 one-hundredths of a second (3)

Since the variables eventtime and nexttime are integers, specifying their values as 0.25 with
INTERVAL_SEC would not produce the desired communications. Instead, it is necessary to
represent a quarter second as 25/100, which means moving our INTERVAL_* down one order of
magnitude from INTERVAL_SEC to INTERVAL_HUNDREDTH.

6 DRDC Toronto TM 2007-033

Table 1. Client-side timing variable values - simple example

Variable Name Value

eventtime 25

nexttime 25

INTERVAL_* INTERVAL_HUNDREDTH

2.2.1.3 Complex example 1

Consider another model built using the paradigm that one IPME simulation time unit is equal to
one year. The designer requires the feedback of an external client 52 times per year (every week).
To achieve this, one can apply the following formula to determine the fractional value of each
simulation time unit (one year for our current paradigm):

1.0 (simulation time unit, or year) / 52 (equal components, or weeks per year)
= 0.019230769 years (4)

The desired external client event interval is ideally 0.019230769 years, or once per week.
Unfortunately the IPME external client timing protocol can only approximate this. The following
values of the relevant client variables will result in a 0.02 level of granularity. To capture
additional precision, it would be necessary for IPME’s external client interface to support 10-3
granularity or for the analyst to model at a finer resolution, say 1 clock unit equates to one month
or one week.

Table 2. Client-side timing variable values – complex example 1

Variable Name Value

eventtime 2

nexttime 2

INTERVAL_* INTERVAL_HUNDREDTH

DRDC Toronto TM 2007-033 7

2.2.1.4 Complex example 2

Consider a model built using the paradigm that one IPME simulation time unit is equal to one
minute. The designer requires the feedback of an external client 1 time per hour (every
60 minutes). To achieve this, one can apply the following formula to determine the fractional
value of each simulation time unit (one minute for our current paradigm):

1.0 (simulation time unit, or minute) * 60 (equal components, or minutes)
= 60 (5)

The desired external client event interval is ideally 60 minutes, or once per hour. Below is a table
outlining the values of the relevant client variables.

Table 3. Client-side timing variable values – complex example 2

Variable Name Value

eventtime 60

nexttime 60

INTERVAL_* INTERVAL_MINUTE

Alternatively, although less intuitive, the analyst could have selected INTERVAL_SEC and
specified eventtime and nexttime values of 3600.

2.2.1.5 Complex example 3

Consider a model built using the paradigm that one IPME simulation time unit is equal to one
day. The designer requires the feedback of an external client 1 time per week (every 7 days). To
achieve this, one can apply the following formula to determine the fractional value of each
simulation time unit (one day for our current paradigm):

1.0 (simulation time unit, or day) * 7 (equal components, or days)
= 7 (6)

The desired external client event interval is ideally 7 days, or once per week. Below is a table
outlining the values of the relevant client variables.

8 DRDC Toronto TM 2007-033

Table 4. Client-side timing variable values – complex example 3

Variable Name Value

eventtime 7

nexttime 7

INTERVAL_* INTERVAL_SEC

Although the model timing is not expressed in seconds, this is the INTERVAL_* value that will
result in the eventtime or nexttime values being multiplied by 1, thus scheduling the subsequent
external client event for 7 simulation time units (days) in the future. Had we chosen
INTERVAL_MINUTES the eventtime and nexttime values would have been multiplied by 60,
resulting in the next event being scheduled 420 simulation time units (days) in the future.

2.2.1.6 Conclusion

Rather than treating the INTERVAL_* variables based on their labels as intuition would dictate,
(hours, minutes, seconds, tenths of a second, hundredths of a second) it may be more useful to
treat them as ‘multipliers of your modelling paradigm’s time unit (n)’ (n*3600, n*60, n, n/10,
n/100). The programmer must then select the combination of integer eventtime and nexttime with
the appropriate units of the INTERVAL_* parameter in such a way that communications between
IPME and the client will occur at the simulation clock time for the established modelling time
units. The IPME event queue can be used during a simulation to test the configuration by
observing times of the ‘External Client Events’.

2.3 A generic external client interface

2.3.1 The issue

Most of the external clients that have been used in projects at DRDC Toronto follow the same
structure and in many cases maintain the same functionality, although the number and names of
the exchange variables may differ. This has lead to the development of a client that was
modularized, separating the IPME communication functionality from the specific operations of
the client. The objective was to make one executable client program that would avoid
manipulating the variable exchange code for each application yet still handle the following details
in a dynamic run-time fashion:

• Specify an undefined number of shared exchange variables

• Expose the shared data for task-specific operations.

• Allow the developer to specify which variables are flagged for returning to the server.

DRDC Toronto TM 2007-033 9

• Allow the user to configure the timing between client and server.

2.3.2 A solution

Much of the client communication code provided with IPME has been rewritten
such that it can be used with any client. This does not offer any performance enhancement
or functional advantage; it merely provides standardization for easily creating clients and
enhanced organization.

The Client Function Module (CFM) is a client module that plugs into the IPME external client
interface module (ipme_interface.c) to provide a template for the exchange of variables between
IPME and a client to which application specific functionality is added to form a complete client.
The CFM may be renamed to suit any custom IPME client application, but it must include the
cfm.h header file.

The CFM tracks the status of each shared variable, setting the varStatus array equal to 1 in the
ipme_interface.c module at the index corresponding to the incoming variable’s index in the
variable table vars. This varStatus array is passed to the cfmAction() function so that the CFM
can perform selective operations instead of merely brute inclusive batch operations.

Several of the client’s key parameter values are read in by ipme_interface.c to increase the
flexibility of the process. These parameter values may be passed along to other modules in the
client as required. There are two files used by CFM clients to provide user defined data:
sharedvars.txt and params.txt. Users may change the exchange variable names and the
communication event timing through these external text files without recompiling the client.

The CFM is accessed in two ways by ipme_interface.c by two distinct function calls. The first
function, cfmInit(), is called once at the beginning of the client execution to initialize the CFM
variables. The second, cfmAction(), is called repeatedly thereafter at every scheduled client event
to receive the exchange variables, process them and finally repackage them for sending back to
IPME. These functions are further described below.

2.3.2.1 CFM function descriptions

1. Initialization is performed once, when the CFM equipped client is first executed.

 Prototyped as: ‘int cfmInit(int f_NUM_VARS, int f_outputFlag);’

 Uses the number of shared variables to allocate memory for required operations

 Applies user request for a CFM output file to be generated

 Permits any other one time setup operations

2. Action is performed at every IPME shared variable exchange with the client.

 Prototyped as: ‘int cfmAction(Variable *f_vars, int f_NUM_VARS, int *f_varStatus,
FILE *f_cfmoutputfile);’

10 DRDC Toronto TM 2007-033

 Calls functions to unpack incoming shared variables, operate on them (generally by
calling a custom designed function), and finally pack them up for resending to IPME
via ipme_interface.c.

 There are 3 main components of cfmAction():

 Unpack Variables, called at the outset of cfmAction().

– Prototyped as: ‘void unpackVars(Variable *f_vars, int f_numIvars, int
*f_varStatus)’.

– This function should be modified to organize the shared variables in a
meaningful way for internal use within the CFM during the client development.

– The programmer can choose to use unpackVars() to place the shared variables
made available by cfmAction through the pointer f_vars into a locally defined
set of structures, arrays or variables. This is the preferred programming practice.
Alternatively, the variable table can be manipulated directly if so desired.

 User Defined Functions

– This comprises one or more customized routines or algorithms that are used to
process the data in a meaningful way.

 Pack Variables, called at the end of cfmAction().

– Prototyped as: ‘void packVars(Variable *f_vars)’

– This function should be modified to update the values of the variable table that
are meant to be sent back to the IPME simulation server. It is only necessary to
update the return variables that have changed and each should be flagged for
return by changing its ‘changed’ status to ‘true’.

2.3.2.1.1 Building the client vars table

The first component of the classic IPME external client is defines the set of variables to be
exchanged. Required elements include:

• the variable name (fully qualified to the Operator or model type if necessary)

• the variable type (commonly one of INT_TYPE, REAL_TYPE or STRING_TYPE
Substituting the variable types with their enum values works as well: 1,2 and 7 respectively)

• the initial variable value (only used if client is configured to set initial values)

The sharedVars.txt file takes the place of this component and the structure of the file is similar to
the layout of the variable definition component outlined in Appendix A of the IPME 3 User
Guide (Anonymous 2004). Entries in this file may be space or tab delimited and an example of
the layout is shown in Table 5. The CFM client reads the entries in the sharedVars.txt file and
dynamically creates the exchange variable list at run time.

DRDC Toronto TM 2007-033 11

Table 5. Sample Params.txt file contents. The columns are: variable name, variable type, initial
value

2.3.2.1.2 Configuring the CFM for run time

The ipme_interface.c component supplied with IPME for building clients is responsible
for configuring the IPME client timing and login of events. These activities have been moved
outside of the code for CFM clients, into a text file called params.txt that is read in at run
time. The ipme_interface.c code reads only the first element of each line, skipping all
subsequent elements on the line to allow for comments. Currently, only four parameter values are
read and they must be in the following order:

• eventtime the IPME simulation clock time of the first communication event

• nexttime the increments (relative to the interval used) of recurring
communications

• INTERVAL_* the “units” of the client communication times as described in section
2.2.1 (0=HOUR, 1=MIINUTE, 2=SEC, 3=TENTH, 4=HUNDREDTH)

• Output flag generate output file cfmoutput for debugging (1=YES, 0=NO)

server_var INT_TYPE or 1 11
client_var_1 INT_TYPE or 1 2
client_var_2 INT_TYPE or 1 2
Threat.env_var INT_TYPE or 1 2
Operator.oprVar.Value INT_TYPE or 1 2

12 DRDC Toronto TM 2007-033

3 Performance enhancements using clients

3.1 Overview

Increased processing efficiency may be achieved during an IPME simulation by offloading
computationally demanding functions from an IPME model to an external client.

An IPME function was built to perform mathematical integration of variables over a specified
window of time during a simulation and return an average value for that window to be used in
subsequent IPME calculations. Simulations that used this function were found to execute slowly
as the scope of the integration increased by lengthening the integration window or increasing the
number of variables to be processed. A client was created to provide this functionality outside of
the IPME simulation environment.

There were two main conditions in this study: 1) IPME Standalone and 2) IPME with client. Each
condition comprised trials characterized by combinations of two independent variables: 1) the
number of variables upon which integration was to be performed (IVARs), and 2) the window of
time over which data points were to be integrated (WINDUR). For this study, the data points were
generated at a regular interval so that manipulation of the WINDUR size affects the
computational demand through the number of data points in the integration The expectation was
that increasing either the WINDUR or the number of IVARs would increase workload, therby
degrading simulation performance represented by the actual time to complete a simulation of a
fixed duration. It was further expected that the time required to conduct the simulation would be
longer when the integration was performed by the internal IPME function as a standalone
simulation than it would in the IPME with client condition.

3.2 Setting up the ‘standalone’ mode

A simple IPME task network was constructed with a repeating task having a mean time of 0.25
with a standard deviation of 0.0 which served to generate data to test our hypotheses. Twenty
global variables were defined so the maximum IVAR value is 20. Expressions were added to the
beginning effects field of the repeating task that incremented all of the variable values by 1. Once
each variable received its new value, each active variable was passed to the integrate function in
turn. The return value from the integration function for a variable, for example IVAR_1, was
assigned to an associated variable, for example AvgIVAR_1, representing the temporal average of
that variable over the current WINDUR.

An IPME scenario event executed at the beginning of each simulation to set the length of the
integration window, WINDUR, for each variable. The WINDUR value was held constant for the
duration of each simulation and all variable had the same WINDUR value, however, WINDUR
was varied between simulations.

The user defined IPME function called ‘integrate’ is given in Appendix A.2. The function and its
parameters were defined in the following code snippet::

DRDC Toronto TM 2007-033 13

Code Snippet 3. IPME standalone defined function for integration

Float integrate(float errorVariable, float errorValue); (7)

The errorVariable parameter is used in the standalone application to indicate to the function
which variable is to be dealt with, as values are stored in arrays and accessed through
the corresponding index. The errorValue variable contains the latest value of the variable
being processed.

3.3 Setting up the ‘with-client’ mode

A similar IPME model was used when the simulation was conducted with a CFM integration
client, instead of the IPME user defined integration function. Values for the integrated variables
were generated as in the standalone mode, but the integration client returns values directly to the
AvgIVAR_* variables. The calls to the integrate function in the scheduling effects of the repeating
task were commented out prior to executing the simulation.

An important step in porting functionality from an IPME model to an external client is variable
dependency. When building a standalone model in IPME, issues of variable exposure, scope, and
persistence are not complicated issues. In such a setup all user defined variables are visible
throughout the model at any given time. The issue becomes more complex, however, when
modularizing a system’s functionality. When extracting specific functionality from an existing
model, it may follow that some variables are no longer needed in the IPME server simulation and
can reside solely in the client. One decision to make when designing a client / server architecture
is whether or not the creation of a client would rely on an excessive amount of shared variables.
In designing the integration client it became apparent that three shared variables were required for
each processed variable IVAR: 1) an error, 2) a return value (measure of central
tendency and 3) the WINDUR associated with the IVAR. Any information tied to the client that
the server could potentially update between communication events will require a shared variable
to communicate those changes to the client.

Depending upon the number of input variables, included in any particular trial, the contents of the
sharedvars.txt file would vary. Table 6 shows that for a single IVAR, three variables are
exchanged between client and server. In addition to the IVAR variables, the clock variable is also
exchanged at each communication.

Table 6. Sample sharedvars.txt file based on one IVAR

Clock REAL_TYPE 0

IVAR_error_1 REAL_TYPE 0

14 DRDC Toronto TM 2007-033

Avg_IVAR_1 REAL_TYPE 0

IVAR_1_WINDUR REAL_TYPE 0

The params.txt file was created to create communications between IPME and the integration
client every 0.25 simulation time units as shown in Table 7. Though optional, it may serve as an
organizational aid to follow up each value with a contextually relevant comment and end the file
with an explanation of the configuration.

Table 7. Setup of the params.txt file for the integration client for communications starting at
0.25 sec, repeating every 0.25 sec, using INTERVAL_HUNDREDTH. Only the first element of the

first 4 lines of this file are read. Task specific notes may follow the entries on or after the first
four lines

25 # eventtime, the IPME clock time of the first communication
event

25 # nexttime, the increments (relative to the interval used) of
recurring communications

4 # 0=INTERVAL_HOUR, 1=INTERVAL_MINUTE, 2=INTERVAL_SEC,
3=INTERVAL_TENTH, 4=INTERVAL_HUNDREDTH

1 # GENERATE OUTPUT FILE (cfmoutput) 1=YES, 0=NO

The CFM integration client structure is outlined in the following paragraphs. A listing of the code
is available in Appendix Error! Reference source not found..

1. cfmInit(): perform any initialization tasks

Place any operations that need occur only once at the outset of the program. This may include:

• allocation memory for structures, arrays, variables

• capturing configuration information for local use, ie: the outputFlag

• initializing variable values

For the integration client an array of ivar structures is dynamically allocated, the windur and
numinwindow variables required for the integration procedure are initialized to 0, and the
outputflag is assigned the value that was read from the params.txt file by ipme_interface.c.

DRDC Toronto TM 2007-033 15

2. unpackVars(): place the incoming variables appropriately for local use

This function is called by cfmAction() before execution of the customized function(s) in order to
prepare the incoming variables for local CFM processing. The complexity of the content in
unpackVars will vary based upon program requirements.

For the integration example there is a need for a certain amount of logic to treat all variables
(after the first one, clock) as groups of three variables (error, avg, windur) that combine to
characterize a single IVAR. In preparation for organizing the incoming data appropriately a
structure is defined to contain all the characteristics of an IVAR (error, windur, etc…). Included
in cfmInit() is the dynamic creation of an array of these IVAR structures based upon the number
of shared variables involved in the current simulation. While looping through the entire vars
table, each shared variable must be assigned to the appropriate member of the ivar structure array
at the appropriate index for that IVAR.

This function also makes use of the varStatus array to increase efficiency of the client. The
varStatus array is assigned in ipme_interface.c and holds a list of flags, one per shared
variable, indicating whether or not they have been changed by the IPME simulation during the
last exchange. It may be used to prevent unnecessary operations on unchanged variables
in the client. One rule underlying the integration client was that an integration calculation is
required when either an IVAR’s error value OR WINDUR are changed. Thus, when unpacking
the variables, an IVAR was internally flagged as ‘requiring integration’ when the value of
varStatus for an IVAR’s error value or WINDUR were set to ‘1’. In this way the CFM can
perform operations of selective variables instead of forcing an ‘en mass’ batch operation on all
shared variables.

3. packVars(): identify and prepare outgoing variable for sending

This function is called by cfmAction() after completion of the customized function(s) in order to
prepare the outgoing variables for sending to the IPME simulation server. The complexity of the
logic will vary based upon program requirements. The ultimate goal is to identify those variables
meant to carry values back to IPME, assign their values in a format compatible with IPME, and
flag them as ‘changed’ so ipme_interface.c will send them to IPME.

In this integration client example, the information sent back to IPME is the output of the
integration function for each error value / WINDUR pair, stored in the ‘avgerror’ member of the
ivar structure. The packVars() function updates the values of the Avg_IVAR_* shared value with
the value of that IVAR’s avgerror value. A string representation of all non-string variables is
required for assignment of values in the vars table; for REAL types, the proprietary IPME string
conversion function float2net must be used (see common_lib.c of the IPME sample client).

4. CFMAction: establish the flow of control for the procedure

This is the function that is called from within ipme_interface.c so the CFM flow of control
starts and ends here. A typical layout for this function is:

a. unpackVars()

16 DRDC Toronto TM 2007-033

b. customized Function(s)

c. packVars()

d. return to ipme_interface

Extra logic may be included to moderate the execution of customized functions. In this
integration example, a for loop iterates through the entire array of IVARs but only the IVARs that
were identified as changed and thus flagged for integration during the unpacking phase are
processed by the integrate() routine.

3.4 Experimental design

A set trials were run for both the ‘standalone’ and ‘with-client’ conditions using integration
window durations, WINDUR values, of 1.0, 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 seconds (clock
units). Each WINDUR was tested using 1, 5, 10, 15 and 20 variables to be integrated (IVARs).
This setup provided 35 data point pairs that could be used to assess any performance differences
between conditions.

Each trial was run for the same IPME simulation time, 300 simulation clock units. This ensured
that the same number of evaluations was performed by both the standalone and with-client in any
trial condition. The total amount of wall clock time, indicated in an IPME dialog upon simulation
completion, was used as the dependent variable to characterise execution performance.

3.5 Results

The IPME simulation execution times for each condition are shown in Table 8. The results are
expressed as the actual time required to execute the model’s 300 simulation clock units. These
data are also expressed as a percentage of real time where the simulation clock units are
considered to represent seconds. The results are also presented graphically in Figure 1 through
Figure 4.

A comparison of IPME simulation execution times between the ‘standalone’ and ‘with-client’
conditions showed marked differences in most conditions. As expected, the simulation duration
increased as the number of variables to be processed (IVARs) increased. Similar trend can be
observed as the integration window duration (WINDUR) increased, although in some
cases, there was no apparent increase in the simulation duration to within the level of precision of
the time measured.

For all but the least demanding condition, the ‘with-client’ configuration was able to complete the
simulation much faster than the ‘standalone’ configuration and at a fraction of the represented
time. The performance improvement of the “with-client” condition is increasingly apparent as the
computational demands of the trial conditions increased, either by increasing the window over
which the variables are integrated or by increasing the number of variables to integrate.

Table 8. Comparison of IPME simulation execution times (in seconds)

DRDC Toronto TM 2007-033 17

Standalone With-client

WINDUR # IVARs sec % real time sec % real time
1 1 36 12.00% 54 18.00%

 5 260 86.67% 56 18.67%
 10 514 171.33% 59 19.67%
 15 769 256.33% 68 22.67%
 20 1026 342.00% 73 24.33%

5 1 151 50.33% 54 18.00%
 5 1029 343.00% 56 18.67%
 10 2083 694.33% 62 20.67%
 15 3135 1045.00% 72 24.00%
 20 4172 1390.67% 76 25.33%

10 1 384 128.00% 55 18.33%
 5 2541 847.00% 57 19.00%
 10 4965 1655.00% 62 20.67%
 15 7568 2522.67% 75 25.00%
 20 9770 3256.67% 79 26.33%

15 1 852 284.00% 54 18.00%
 5 4437 1479.00% 59 19.67%
 10 8672 2890.67% 69 23.00%
 15 13676 4558.67% 77 25.67%
 20 18532 6177.33% 83 27.67%

20 1 1282 427.33% 54 18.00%
 5 6822 2274.00% 60 20.00%
 10 13621 4540.33% 71 23.67%
 15 21126 7042.00% 80 26.67%
 20 27511 9170.33% 90 30.00%

25 1 1864 621.33% 54 18.00%
 5 9435 3145.00% 59 19.67%
 10 19291 6430.33% 73 24.33%
 15 25972 8657.33% 85 28.33%
 20 36238 12079.33% 87 29.00%

30 1 2515 838.33% 56 18.67%
 5 12757 4252.33% 60 20.00%
 10 25761 8587.00% 76 25.33%
 15 39607 13202.33% 89 29.67%
 20 52774 17591.33% 98 32.67%

18 DRDC Toronto TM 2007-033

Figure 1. Standalone configuration performance

Standalone Configuration Performance

0

10000

20000

30000

40000

50000

60000

1 5 10 15 20 25 30

WINDUR

Se
co

nd
s

1 IVAR
5 IVARS
10 IVARS
15 IVARS
20 IVARS

Figure 2. With-client configuration performance

With-Client Configuration Performance

0

20

40

60

80

100

120

1 5 10 15 20 25 30

WINDUR

S
ec

on
ds

1 IVAR
5 IVARS
10 IVARS
15 IVARS
20 IVARS

There are a couple of noteworthy comparisons that reveal the superior efficiency of the ‘with-
client’ configuration. The first is the range in execution times moving incrementally from one
IVAR up to twenty. Despite the execution time being shorter for the standalone than the ‘with-
client’ configuration when WINDUR=1 and # IVARs=1 (perhaps the impact of TCP/IP socket
communication overhead), the addition of any further workload resulted in disproportionately
greater performance degradation using the standalone configuration. The following table outlines

DRDC Toronto TM 2007-033 19

the range in execution time (seconds) across the number of IVARs (T20-IVARs – T1-IVAR) for each
level of WINDUR between the ‘with-client’ and standalone conditions.

The execution time for the client integration routine was relatively insensitive to either the
WINDUR or the number of IVARs, as shown in Figure 3 and Figure 4. Closer inspection of the
data in Table 8 shows that there is a slight execution time increase for increasing either parameter,
but that it is small compared to the increases observed under similar conditions with a standalone
IPME user defined function. In many of the conditions, the execution time with the standalone
integration function in IPME took one or two orders of magnitude longer to complete than with
the integration client.

1

10

100

1000

10000

100000

0 5 10 15 20 25

Number of variables

Si
m

ul
at

io
n

du
ra

tio
n

(s
)

Standalone 1s Client 1s

Standalone 30s Client 30s

Figure 3. Execution time for selected conditions as a function of the number of IVARs included in
the integration routine plotted on a log scale

20 DRDC Toronto TM 2007-033

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

Integration window duration (s)

Si
m

ul
at

io
n

du
ra

tio
n

(s
)

Standalone 1 var Client 1 var
Standalone 20 var Client 20 var

Figure 4. Execution time for selected conditions as a function of WINDUR in the integration
routine, plotted on a log scale

These results indicate that when tasked to process identical workloads the ‘with-client’
configuration will process it in substantially less time than the standalone configuration.

Table 9. Range of execution times across IVAR intervals (in seconds)

 WINDUR

 1 5 10 15 20 25 30

Standalone
990 4021 9386 17680 26229 34374 50259

With-client
19 21 24 29 36 33 42

Besides a remarkable difference in pure performance degradation, there was also an interesting
difference concerning the way this degradation was applied. Collapsing across the number of
IVARs, it was found that increasing the WINDUR caused greater degradation in the standalone
condition. The ‘with-client’ configuration was more robust in handling a larger integration
window in that it was able to ‘keep up’ with the heightened processing demands better than when
the same calculations were processed within IPME.

DRDC Toronto TM 2007-033 21

4 Conclusion

IPME simulations that require computationally intensive procedures will benefit from using an
external client to perform these processes rather than coding the expressions internally.
Implementing an external client configuration improves processing power and speed of and IPME
model. This enables the modeler to include computationally intensive procedures, and makes the
model more robust to increased demand. In other words, there is small amount of overhead
associated with the exchange of information between an IPME server and its client, but the
benefits of increased processing power and computational robustness far outweigh this cost. A
model that is supported by a client module will greatly outperform a standalone model
comprising the same functionality and demand.

The Client Function Module (cfm) approach to IPME external client setup can simplify how
clients are used, particularly when a versatile client is required for several applications. Building
an IPME client can be somewhat daunting, but adopting practices demonstrated by the CFM can
simplify the process by outlining and compartmentalizing the elements of code that need to be
manipulated to arrive at the desired configuration. This reduces the amount of modification to the
client code required of the end user and can eliminate the need to recompile when the client is
used for similar functions in different applications.

As simulation technology improves, the potential for heightening the complexity of simulation
and modeling grows with it. No longer will a modeler opt out of including certain process
components in a model based on performance concerns. Scientists will be able to fill in more
gaps, and replace more assumptions, or black boxes with theory and knowledge. This all leads to
the exploration of more scientific questions, unhampered by technological constraint.

As simulation technology improves, the potential for heightening the complexity of simulation
and modeling grows with it. Improvements to data processing power and heightened
computational efficiency continue to open doors for scientists who can in turn investigate
questions of greater complexity.

22 DRDC Toronto TM 2007-033

References.

Anonymous (2004). Integrated Performance Modelling Environment. User Guide. Version 3.0.
Boulder, CO., Micro Analysis and Design.

DRDC Toronto TM 2007-033 23

A.1 IPME user defined integration function

//funct PositionIntegrationWindow[int errorVariable, float errorValue]
{

/*
This function will be passed two variable values, the variable to be
controlled and the associated error. The function will pick up the time
the value of the variable was observed from the clock. Then the function
will update the error integration window and return the area under the
area-time curve for an integral control calculation.

The function makes use of a global variable for the position array that
contains all the required data for the integration components in the
control loop.

Currently, the position array is cleverly named
PositionArray[errorVariable][errorCount][errorElement]
where
errorVariable is an integer that corresponds to the current error in
question
errorCount is an index corresponding to the number of errors in the
current window, with 0 being the most recent, stretching back in time to
a numInWindow[errorVariable] up to MAX_INDEX
errorElement is an index, currently from 0:3 corresponding to Time of
the error, Error value, Error interval, Error value multiplied by Error
Interval, respectively

The funciton expects two global arrays
WINDUR[errorVariable] that contains the window in time to be used for
the integration segment - this may change in the simulation but is >=0;
and
numInWindow[errorVariable] that contains the number of relevant entries
in the error array for the integration interval

*/

float retval = 0.0; // holds the value to be returned from the function

if (WINDUR[errorVariable] > 0.0) then // The integration window
duration is larger than zero so
 do some calcs else return
nothing
{
 int TIME = 0; // Index for time of error percept in
error array
 int ERROR = 1; // Index for error percept in error array
 int DELTA_T = 2; // Index for time step duration in error
array
 int EXDT = 3; // Index for error*timestep_duration or
area under erorr curve at this time

24 DRDC Toronto TM 2007-033

 int j; // General purpose counters
 int k;

 int CURRENT = 0;
 int PREVIOUS = 1;

 float totalEXDT = 0.0; // holds the quadrature estimate of the area
under the error curve segement
 float winDuration = 0.0; // active duration of integration window
which may be less than WINDUR if WINDUR was resized or at the beginning
of the sim

 /* Calculate the earliest time that can be considered for the
integration window, winLBound. The number of entries may corresponde to
an interval shorter than this if the WINDUR value is increased during
the simulation. Error values that were originally outside of the window
are excluded when the window size is recalculated and this is controlled
by the numInWndow value that can only be incremented once in any
iteration but may be decremented by any amount.
 */

 float winLBound = max(0.0, clock - WINDUR[errorVariable]);

 // Loop through the current entries in the error array, moving each
entry down one index for the
 current errorVariable

 if (numInWindow[errorVariable] > 0) then // There is at least 1
observation of error in the
 error history window
 {
 int tmp=numInWindow[errorVariable]; //tmp tracks
numInWindow for this error without
 messing up the for
loop

 for (j=numInWindow[errorVariable] - 1; j >=0; j--)
 {

 /* First copy all the current values in the error array
window down one index. This will copy incorrect dt and error * dt
information from the old fist entry (index 0) into the second entry
(index 1) because the dt for the second entry will change with the
addition of the new entry, but this will be corrected below.
 */

 for (k=0; k<4; k++)
 { PositionArray[errorVariable][j+1][k] =
PositionArray[errorVariable][j][k]; }

 // If an error occurred prior to the lower bound on the
integration window we nolonger need it or any errors that came before
it.

DRDC Toronto TM 2007-033 25

 if (PositionArray[errorVariable][j][TIME] < winLBound &&
j < numInWindow[errorVariable]) then tmp--;

 } //End for (j=numInWindow[errorVariable] - 1; j >0; j--)

 numInWindow[errorVariable] = tmp; // reset the number of
entries in the integration window

 } //End if(numInWindow[errorVariable] > 0)

 // Add the current error to the first entry in the array

 PositionArray[errorVariable][CURRENT][TIME] = clock; // Add the
current time to the position array
 PositionArray[errorVariable][CURRENT][ERROR] = errorValue; // Add the
current error to the

position array

 //Increment the number of relevant entries in the position array to
reflect the new entry and check to make sure we haven't gone out of
bounds

 numInWindow[errorVariable]++;

 if (numInWindow[errorVariable] > MAX_INDEX) then
 {
 debug(1, MAX_INDEX, numInWindow[errorVariable], "Number of entries
error array out of bounds.");
 halt();
 } // End if(numInWindow[errorVariable]++ > MAX_INDEX)

 // Perform integration calculations on window data

 if(numInWindow[errorVariable] > 1) then
 {

 // Compute entries for the first element of the error array

 PositionArray[errorVariable][CURRENT][DELTA_T] =
(PositionArray[errorVariable][CURRENT][TIME] -
PositionArray[errorVariable][PREVIOUS][TIME])/2.0; // first timestep
duration
 PositionArray[errorVariable][CURRENT][EXDT] =
PositionArray[errorVariable][CURRENT][ERROR] *
PositionArray[errorVariable][CURRENT][DELTA_T]; // first error
* duration

 // Compute entries for the last element of the error array

 int lastNum = numInWindow[errorVariable] -1;

26 DRDC Toronto TM 2007-033

 float dt_half = (PositionArray[errorVariable][lastNum-1][TIME] -
PositionArray[errorVariable][lastNum][TIME])/2.0; // First half of
the timestep interval

 PositionArray[errorVariable][lastNum][DELTA_T] = dt_half +
min(dt_half, (PositionArray[errorVariable][lastNum][TIME] - winLBound));
// last timestep duration.

 /* NOTE. If WINDUR is increased during simulation, last error will
be exagerated until the
 window refills unless we limit it. My first attempt to limit
this is to limit the second
 half of the dt interval to be the smaller of either the half
time step to the next time
 or the time to the window lower bound. This may reduce the
contributions of the last error
 term to the integral, however, this effect should be minor as
the number of errors in the
 window increases.
 */

 PositionArray[errorVariable][lastNum][EXDT] =
PositionArray[errorVariable][lastNum][ERROR] *
PositionArray[errorVariable][lastNum][DELTA_T]; // last error *
duration

 /* Only need to update the second intermediate entry unless it is
the last entry, since the
 second entry contains the old first entry values from last
iteration. All other
 intermediate entries will remain the same. If the second entry
is also the last entry in the
 window, its values are calculated above.
 */

 if (numInWindow[errorVariable] > 2) then
 {
 PositionArray[errorVariable][PREVIOUS][DELTA_T] =
(PositionArray[errorVariable][CURRENT][TIME] -
PositionArray[errorVariable][PREVIOUS + 1][TIME])/2.0; // duration
 PositionArray[errorVariable][PREVIOUS][EXDT] =
PositionArray[errorVariable][PREVIOUS][ERROR] *
PositionArray[errorVariable][PREVIOUS][DELTA_T]; // error * duration

 } //End if(numInWindow[errorVariable] > 2)

 // Calculate the area under the error curve and duration for that
error curve segment

 for (j=0; j <= numInWindow[errorVariable]; j++)
 {
 totalEXDT += PositionArray[errorVariable][j][EXDT];
 winDuration += PositionArray[errorVariable][j][DELTA_T];

DRDC Toronto TM 2007-033 27

 } // End for (j=0; j <= numInWindow[errorVariable] - 1; j++)

 //Calcualte the average value as the integral divided by the
interval for this error score

 retval = totalEXDT/winDuration;

 } // End if(numInWindow[errorVariable] > 1)
} // End if (WINDUR[errorVariable] > 0.0)

return(retval);

} // End of func errorIntegrationWindow[]

A.2 Listing of the cfm client code that performs the variable
integration

A.2.1 ipme_interface.c: The module responsible for passing exchange
vars with IPME

// includes
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include "IPME_sockets.h"
#include "cfm.h"
// end includes

// definitions and
#define BUFFER_LENGTH 5000
// end definitions

// variables
 int ctr, ctr_1; // various counter needs
 int NUM_SHARED_VARS; // number of shared vars specified
in params.txt
 char dummy[BUFFER_LENGTH];
 char typeHolder[20];
// end variables

 // main method

28 DRDC Toronto TM 2007-033

int main(int argc, char *argv[]){

 char * new_value;
 long eventtime; // in seconds, 60 = 1 minute, from
params.txt
 long nexttime; // in seconds, 60 = 1 minute, from
params.txt
 int ipmeInterval;
 int outputFlag=0;
 int done = 0;
 int i_finished = 0;
 int first_time = 0;
 FILE *paramsFile;
 FILE *sharedVarsFile;
 FILE *CFMoutputfile;

 // OPEN params.txt and extract the timing information
 paramsFile = fopen("params.txt", "r");
 fscanf(paramsFile, "%d", &eventtime); fnl(paramsFile);
 fscanf(paramsFile, "%d", &nexttime); fnl(paramsFile);
 fscanf(paramsFile, "%d", &ipmeInterval); fnl(paramsFile);
 fscanf(paramsFile, "%d", &outputFlag); fnl(paramsFile);
 fclose(paramsFile);

 Variable_table tmp_table = NULL;

 /* These are the IPME variables we are exchanging */

 /* remember that Variable.value is a char*, not a char array
 */
 /* Thus we need to make sure there is a spot big enough to copy */
 /* variable values into */
 /* you can hard code space for the variables as shown below, or */
 /* dynamiclly malloc and free space for the variables. If you have
 */
 /* complete confidence in the maximum number of characters in any
 */
 /* values being passed back and forth, the hard coding method is
fine.*/
 /* Otherwise you need to allocate the space dynamically */

 /* I figure integers won't get more that 24 charactes long (remember)
 */
 /* to have space for a NULL byte */

 // *
 // Extract data from params.txt file to identify our exchange data
 // *

 // count number of parameters in parameters file
 int o;
 sharedVarsFile = fopen("sharedvars.txt", "r");

DRDC Toronto TM 2007-033 29

 //open to clear, close and reopend to append

 if(outputFlag){
 CFMoutputfile = fopen("CFMoutput", "w");
 fclose(CFMoutputfile);CFMoutputfile=fopen("CFMoutput", "a");
 } // END IF

 // DETERMINE NUMBER OF SHARED VARS SPECIFIED IN PARAMS.TXT
 NUM_SHARED_VARS=0;
 while(!feof(sharedVarsFile)) { fnl(sharedVarsFile);
NUM_SHARED_VARS++; }
 rewind(sharedVarsFile); // BACK TO BEGINNING

 // CREATE OUR VARIABLE TABLE BASED ON NUM OF EXCHANGE VARS
 Variable vars[NUM_SHARED_VARS], *vars_ptr;
 int varStatus[NUM_SHARED_VARS], *varStatus_ptr;

 char valueHolder[NUM_SHARED_VARS][255]; // BUFFER FOR VAR VALUES

 // pull data into our variable table
 for(o=0;o<NUM_SHARED_VARS;o++){

 fscanf(sharedVarsFile, "%s", &vars[o].name); // name
 fscanf(sharedVarsFile, "%s", &typeHolder); //
type
 if(strcmp(typeHolder, "INT_TYPE") == 0) { vars[o].type
= INT_TYPE;}
 if(strcmp(typeHolder, "REAL_TYPE") == 0) {
vars[o].type = REAL_TYPE;}
 if(strcmp(typeHolder, "STRING_TYPE") == 0) {
vars[o].type = STRING_TYPE;}
 fscanf(sharedVarsFile, "%s", &valueHolder[o]); // value
 vars[o].value = valueHolder[o];
 fnl(sharedVarsFile); // skip to next line

 } // end for

 fclose(sharedVarsFile);

 printf("\nVARIABLES BEING EXCHANGED WITH IPME:");
 printf("\n+
+ + + + + + + + + + + + + + + + +\n");
 if(outputFlag) fprintf(CFMoutputfile, "\nVARIABLES BEING EXCHANGED
WITH IPME (THESE MUST EXIST IN IPME):");
 if(outputFlag) fprintf(CFMoutputfile, "\n+ + + + + + + + + + + + +
+ +\n");

 for(o=0;o<NUM_SHARED_VARS;o++){

 printf("\n%s", vars[o].name);
 printf("\t%d", vars[o].type);
 printf("\t%s", vars[o].value);

30 DRDC Toronto TM 2007-033

 if(outputFlag) {
 fprintf(CFMoutputfile, "\n%s", vars[o].name);
 fprintf(CFMoutputfile, "\t%d", vars[o].type);
 fprintf(CFMoutputfile, "\t%s", vars[o].value);
 } // end if

 } // end for

 // INITIALIZE CFM
 // USE THE NUM_SHARED_VARS TO SET YOUR CFM STAGE
 if(!(cfmInit(NUM_SHARED_VARS, outputFlag))){
 printf("\nCFM initialization error\n");
 exit(0);
 } else {
 printf("\nCFM initialization success with %d shared variables.\n",
NUM_SHARED_VARS);
 }
 // END IF

 printf("\n+
+ + + + + + + + + + + +\n");
 printf("\nWaiting for IPME to begin...\n");
 if(outputFlag) fprintf(CFMoutputfile, "\n+ + + + + + + + + + + + +
+ + + + + + + + + + +\n");

 // *

 int num_vars;
 int i;
 int varValue;
 int socket;
 char hostName[CLIENT_NAME_SIZE];
 char clientAddr[CLIENT_NAME_SIZE];
 char clientName[CLIENT_NAME_SIZE]; /* This name must match the
client name */
 /* in the External Clients dialog
that */
 /* comes up when The External...
button */
 /* in the System Description dialog
 */

 if (argc != 3)
 {
 printf ("Usage: client IPME_Server_Node IPME_System_Name\n");
 exit (0);
 }

 gethostname (hostName, (size_t) CLIENT_NAME_SIZE);

DRDC Toronto TM 2007-033 31

 /* argv[0] is the full path name for this application so we need
to extract */
 /* just the application name
 */

 for (i = strlen(argv[0]); i >= 0 && argv[0][i] != '/'; i--);
 /* back up to first / */
 strcpy (clientName, &argv[0][++i]); /* copy from
just after first / */

 if ((socket = init_client_socket(argv[1],
 argv[2],
 hostName,
 clientName,
 clientName,
 2000)) < 0) /* if sent addr bad */
 {
 printf ("Failed to initialize client socket\n");
 exit (-1);
 }

 sprintf (clientAddr, "%s:%s:%s", hostName, clientName, "");
 send_name(clientAddr, socket);
 printf("received time increment %d\n", recv_clock(socket));

 send_clock(ipmeInterval, socket);

 if (recv_start (socket) < 0)
 {
 printf("Panic: error receiving start message\n");
 close_client_socket(socket);
 exit(1);
 }

 /* send list of interested variables -- values are unused */
 for(int i = 0 ; i < NUM_SHARED_VARS; i++)
 {
 vars[i].changed = true;
 }
 send_variables (NUM_SHARED_VARS, vars, socket);

 /* send time of first event */
 send_time(eventtime, socket);

 /* send initial conditions */
 /* if no variable initial values are sent, the initial value
 */
 /* specified in the variable owning model is used. */
 /* remember that initial values for client variables must be
 */
 /* initialized in this step, no initial values are set in the
 */
 /* send_variables statement above */

32 DRDC Toronto TM 2007-033

 for(int i = 0 ; i <NUM_SHARED_VARS; i++)
 {
 //vars[i].changed = true;
 }
 send_variables (0, vars, socket); //was (2, vars, socket)

 /* tell IPME we're ready to go */
 send_wait(socket);

 while (!done)
 {

 /* wait for server to tell us it's our turn */
 for (i = 0; i < 10 && recv_go (socket) < 0; i++)

 if (i >= 10)
 {
 printf("Panic: error receiving go message\n");
 break;
 }

 //gettimeofday(&start_timeval, NULL);
 /* get current values for interested variables */
 tmp_table = recv_variables(&num_vars, socket);

 //gettimeofday(&end_timeval, NULL);
 //printf("\nTotal Time for recv_variables (microsecs): %ld\n",
(end_timeval.tv_sec-start_timeval.tv_sec) * 1000000 +
(end_timeval.tv_usec-start_timeval.tv_usec));
 //fprintf(ipmetimeoutput, "\n%lf", ((end_timeval.tv_sec-
start_timeval.tv_sec) * 1000000 + //(end_timeval.tv_usec-
start_timeval.tv_usec))/1000.0);

 if(!tmp_table && (num_vars != 0))
 {
 printf("Panic: error receiving variable values\n");
 break;
 }

 // initialize varStatus array to 0 values
 for(o=0;o<NUM_SHARED_VARS;o++) varStatus[o] = 0;
 int varStatusIndex=0;

 // ---

 // PROCESS VARIABLES
 /* Currently, ALL variables are checked from incoming IPME values.
Later,
 it may make sense to remove some, of which only initial
values are req'd */

DRDC Toronto TM 2007-033 33

 //printf("\n^^^^^ FROM client part, num_vars: %d\n",
num_vars);
 for (i=0; i< num_vars; i++)
 {

 /* variables for each ipme communication iteration */

 /* NOTE: there must be attention paid to ensure that each
vars[i] is
 checked against the proper one as defined in vars
above. For example
 to check for the variable as defined in vars as the
5th array element,
 make sure you do: strcmp(tmp_table[i].name,
vars[4].name). It used to
 compare tmp_table values against the hard coded
variable name, but
 efforts to make the operator name dynamic required a
reference to the
 name dynamically. */

 for(o=0;o<NUM_SHARED_VARS;o++){
 if (strcmp(tmp_table[i].name, vars[o].name) ==
0 /*&& vars[o].mode == 1*/)
 {
 strcpy(vars[o].value, tmp_table[i].value);
 varStatus[o]=1; // INDICATE AN UPDATE
VALUE FOR THIS VAR
 break;
 } // END IF
 } // END FOR 0<NUM_SHARED_VARS

 } // END FOR

 // As a result of the generic nature of this client, all
 // datatypes of all variables are string. It is the
programmer's
 // responsibility to convert the variables to the datatypes
 // requested by any functions that act upon them

 vars_ptr = &vars[0];
 varStatus_ptr = &varStatus[0];

 int success;

 if(!(success = cfmAction(vars_ptr, NUM_SHARED_VARS, varStatus_ptr,
CFMoutputfile))){
 printf("\nfunction 'clientFunctionModuleAction' failed
to complete. Exiting...\n");
 exit(0);
 } // END IF ! success

 // In this model, the updating of vars table is done in the
'client function

34 DRDC Toronto TM 2007-033

 // module (CFM)'. All that needs to be done now is the sending.
All return
 // vars have been populated and flagged as changed=true in the
'packVars' function.

 // --

 // Step 11: Sending IPME an event completed signal
 send_event_complete(socket);

 // --

 // Step 12: Send variables that is changed in this process */
 send_variables(NUM_SHARED_VARS, vars, socket);

 // --

 // delete tmp_table
 if (tmp_table != NULL)
 { delete tmp_table;
 }

 // --

 // Step 13: Send time of next event
 eventtime += nexttime;
 send_time(eventtime, socket);

 // --

 // Step 14: Send signal to IPME to indicate that the client is
ready for next process.
 send_wait(socket);
 }

 close_client_socket(socket);

 return 0;

} // end main

/*
 these are required functions for the common library
*/
void ServerExitCallback(int s)
{

DRDC Toronto TM 2007-033 35

 close_client_socket(s);
 printf("Exit received from server -- exiting\n");
 fflush(stdout);
 exit(1);
}

void ServerAbortCallback(int s)
{
 close_client_socket(s);
 printf("Abort received from server -- exiting\n");
 fflush(stdout);
 exit(1);
}

void ServerCompleteCallback(int s)
{
 close_client_socket(s);
 printf("Complete received from server\n");
 fflush(stdout);
 exit(1);
}

void ServerPauseCallback(int s)
{
 printf("Pause Received from server\n");
 fflush(stdout);
}

void ServerResumeCallback(int s)
{
 printf("Resume Received from server\n");
 fflush(stdout);
}

// MOVES THE CURSOR TO THE NEXT LINE IN THE FILE
void fnl(FILE *f){
 fgets(dummy,BUFFER_LENGTH,f);
 }

A.2.2 simon_integrator.c: The cfm module that processes exchange
variables

#include "cfm.h"
#include "simon_integrator.h"

/*
* This function works under 2 assumptions:
* 1) the variables in the vars parameter are consistent with the

36 DRDC Toronto TM 2007-033

* variables laid out in params.txt
* 2) Any return variables are flagged as 'changed' within this
* code, not in the IPME socket interface.
* This system makes for a more generic IPME socket variable exchange
* interface.
*
* As a 'client function module' (cfm) this receives a pointer to the
* first element of 'vars', which is an array of type Variable_table,
* which is a pointer type of Variable. This gives the function access
* to the raw data. Since each data member's value is in char format,
* translation of required variables to their desired type is to be
* done here. Once the value of returning variables have been updated,
* the re-translation into char is done here as well. This again, makes
* for a more generic IPME socket variable exchange interface as it is
* now only responsible for populating the vars table and sending back
* all variables that have 'changed=true' after the function module has
* completed it's task.
* */

// define the local variables that will hold copies of our exchange
// variables to be manipulated by our 'cfm'.
// The variables here are dictated by the needs of the cfm, and are
// directly associated with the variables outlined in params.txt
float clock;

ivar *ivars;

FILE *l_CFMoutputfile;

float winDuration; // amount of time window spans
float winLBound; // adjusts to time of newX minus
winDuration
float winUBound; // same as newX time, for readability
int numInWindow; // number of err scores in the window
float totalError; // sum of error over window
float totalDeltaT; // sum of deltaT over window
float totalXDT; // sum of (errorXdeltaT) over window
float currentTime; // to hold the most recent
clock time from IPME
float retval; // final answer
int numIvars; // how many variables we want to perform
integration on
 // this will define the number of ivar packs we
use
int NUM_VARS; // number of total exchange vars,
including clock
int outputFlag;
int integrateVarsStart; // index of the first element of the first
3 pack
int NUM_IN_PACK; // Exchange vars are in groups of 3
float ErrorArray[MAX_IVARS][MAX_INDEX][4]; // array to hold desired
err vals and times
 // NOTE: only storing calc steps (delta_T,
errorXdeltaT)

DRDC Toronto TM 2007-033 37

 // for display purposes.
 // for efficiency, we could simply accumulate
running
 // totals in 1 float.

// *
// This fires only once at the beginning of the client's life
// *
int cfmInit(int f_NUM_VARS, int f_outputFlag){
 int i;
 ivars = (ivar *)malloc(f_NUM_VARS * sizeof(ivar)); // allocate
memory
 for(i=0;i<f_NUM_VARS;i++) {
 ivars[i].numInWindow=0;
 ivars[i].windur=0.0;
 } // end for
 outputFlag = f_outputFlag;
 return 1;

} // end cfmInit()

/*
* define your customized function here that was declared in
* cfm.h and called in cfmAction();
* */
float integrate(float f_currentTime, int ivarIndex){

 printf("\n\n--
");
 printf("\nINTEGRATING FOR IVAR AT INDEX %d\n\n", ivarIndex);
 printf("\n\n--
");

 if(outputFlag){
 fprintf(l_CFMoutputfile, "\n\nINTEGRATING FOR IVAR AT INDEX
%d", ivarIndex);
 fprintf(l_CFMoutputfile, "\n--------------------------------
--------------------\n");
 } // END IF

 // ASSOCIATE WITH THE CORRECT ERRVAR'S INFORMATION
 numInWindow = ivars[ivarIndex].numInWindow;

 // GET THE WINDOW UPPER AND LOWER LIMITS
 winUBound = f_currentTime;

 winDuration = ivars[ivarIndex].windur;

38 DRDC Toronto TM 2007-033

 // if Ubound is less than defined WINDUR, make winDuration = to
winUBoud
 //if(winDuration<WINDUR) winDuration = winUBound < WINDUR ?
winUBound : WINDUR;

 winLBound = (winUBound - winDuration)< 0.0 ? 0.0 : (winUBound -
winDuration);
 totalDeltaT=0.0; // REFRESH IT
 totalError=0.0;
 totalXDT=0.0;

 // *
* * * *
 // IF THERE ARE EXISTING RECORDS IN THIS IVAR'S "MEMORY" WINDOW
 // WE MUST SHIFT THEM ALL DOWN ONE
 // *
* * * *

 if(numInWindow > 0){

 int tmp=numInWindow; // tmp TRACKS numInWindow WITHOUT
MESSING UP THE FOR LOOP
 int j,k;

 // LOOP THROUGH CURRENT ErrorArray FOR THIS IVAR. MOVE EACH
SCORE DOWN ONE INDEX.
 for(j=numInWindow-1;j>=0;j--){

 for(k=0;k<4;k++)
ErrorArray[ivarIndex][j+1][k]=ErrorArray[ivarIndex][j][k];

 // IF A SCORE HAS MOVED PAST THE WINDOW, DECREASE
 // numInWindow BY ONE. WE NO LONGER NEED THAT SCORE.
 if(ErrorArray[ivarIndex][j][TIME]< winLBound &&
j<numInWindow) tmp--;

 } // END FOR

 // APPLY NEW numInWindow
 numInWindow=tmp;

 } // END IF

 // LOG CURRENT ERROR VALUE THAT IS BEING ADDED TO TOP OF WINDOW

 // TIME TO POPULATE THE FIRST INDEX WITH THE NEW ERRORVAL
 ErrorArray[ivarIndex][CURR][TIME]=f_currentTime;
 ErrorArray[ivarIndex][CURR][ERRORVAL]=ivars[ivarIndex].error;

 // SINCE WE HAVE AT LEAST ONE RECORD, REFLECT IT IN numInWindow
 numInWindow++;

 // OUTPUT TO FILE START

DRDC Toronto TM 2007-033 39

 if(outputFlag) fprintf(l_CFMoutputfile, "\nWORKING ON ERROR VALUE
OF: %f\n", ErrorArray[ivarIndex][CURR][ERRORVAL]);

 int t, LAST;
 float dt_half,dt_minus_wlbound;

 // IF WE HAVE MORE THAN ONE (OR AT LEAST ONE) ERROR VALUE IN
WINDOW...
 if(numInWindow>1){

 // PERFORM INTEGRATION CALCULATIONS ON WINDOW DATA

 // IF IT IS THE FIRST ONE...

 // CALCULATE DT

 ErrorArray[ivarIndex][CURR][DT]=(ErrorArray[ivarIndex][CURR][TIME]
-ErrorArray[ivarIndex][PREV][TIME])/2.0;

 // MULTIPLY ERRORVAL by DT
 ErrorArray[ivarIndex][CURR][XDT] =
ErrorArray[ivarIndex][CURR][ERRORVAL] * ErrorArray[ivarIndex][CURR][DT];

 // IF IT'S THE LAST ONE WE APPLY A DIFFERENT FORMULA
 LAST = numInWindow-1;

 // CALCLULATE FIRST HALF OF LAST TIME INTERVAL
 dt_half = (ErrorArray[ivarIndex][LAST-1][TIME] -
ErrorArray[ivarIndex][LAST][TIME]) / 2.0;
 dt_minus_wlbound = ErrorArray[ivarIndex][LAST][TIME]-
winLBound;
 ErrorArray[ivarIndex][LAST][DT]= dt_half;
 //ErrorArray[ivarIndex][LAST][DT]+= dt_half <
dt_minus_wlbound ? dt_half : dt_minus_wlbound;

 // NOTE. If WINDUR is increased during simulation,
last error will be exagerated until the window refills unless we limit
it. My first attempt to limit this is to limit the second half of the dt
interval to be the smaller of either the half time step to the next time
or the time to the window lower bound. This may reduce the contributions
of the last error term to the integral, however, this effect
should be minor as the number of errors in the window increases.
 ErrorArray[ivarIndex][LAST][XDT] =
ErrorArray[ivarIndex][LAST][ERRORVAL] * ErrorArray[ivarIndex][LAST][DT];

 // Only need to update the second intermediate entry
unless it is the last entry, since the second entry contains the old
first entry values from last iteration. All other intermediate entries
will remain the same. If the second entry is also the last entry in the
window, its values are calculated above.

40 DRDC Toronto TM 2007-033

 // IF WE HAVE AT LEAST 2 ERRORS IN OUR WINDOW
 if(numInWindow > 2) {

 // DURATION
 ErrorArray[ivarIndex][PREV][DT] =
(ErrorArray[ivarIndex][CURR][TIME]-ErrorArray[ivarIndex][2][TIME])/2.0;
 // ERRORVAL * DURATION
 ErrorArray[ivarIndex][PREV][XDT] =
ErrorArray[ivarIndex][PREV][ERRORVAL] * ErrorArray[ivarIndex][PREV][DT];

 } // END IF numInWindow > 2

 // CALCULATE THE AREA UNDER THE ERRORVAL CURVE AND
DURATION FOR THAT ERRORVAL CURVE SEGMENT
 int s;
 for(s=0; s<=numInWindow-1; s++){

 totalXDT += ErrorArray[ivarIndex][s][XDT];

 } // END FOR

 // UPDATE TOTALS USED IN retval CALCULATION
 // & PRINT OUT THE CURRENT STATUS OF THE ErrorArray
 for(t=0;t<numInWindow;t++){

 totalDeltaT+=ErrorArray[ivarIndex][t][DT];
 totalError+=ErrorArray[ivarIndex][t][ERRORVAL];
 // OUTPUT TO FILE START
 if(outputFlag) fprintf(l_CFMoutputfile,
"\nwa[%d]\tivarIndex: %d\terr: %lf\t\ttime: %lf\t\tdt: %lf\t\teXdt:
%lf",
 t, ivarIndex,
ErrorArray[ivarIndex][t][ERRORVAL], ErrorArray[ivarIndex][t][TIME],
ErrorArray[ivarIndex][t][DT], ErrorArray[ivarIndex][t][XDT]);

 } // END FOR

 // COMPUTE RETURN VAL (INTEGRATED VALUE BASED ON
ERRORVAL AND WINDOW VALS
 retval = totalXDT/totalDeltaT;

 // OUTPUT TO FILE START
 if(outputFlag){
 fprintf(l_CFMoutputfile, "\n--");
 fprintf(l_CFMoutputfile, "\n\tTerr: %lf\t\t\t\t\tTdt:
%lf\t\tTXDT: %lf\t\tnumInWindow: %d",totalError, totalDeltaT, totalXDT,
numInWindow);
 fprintf(l_CFMoutputfile, "\n--------------------------
--
-");
 fprintf(l_CFMoutputfile, "\n\tretval: %lf", retval);
 fprintf(l_CFMoutputfile, "\n------\n\n\n");

DRDC Toronto TM 2007-033 41

 } // end if

 } else {// WE ONLY HAVE ONE RECORD, SO WE'LL RETURN THE INDIVIDUAL
ERROR AS OUR AVGERROR

 retval = ErrorArray[ivarIndex][CURR][ERRORVAL];

 } // END IF numInWindow > 1

 // LOG THE numInWindow so we can pick up where we left off next
time for this ivar
 ivars[ivarIndex].numInWindow = numInWindow;

 return retval;

} // END integrate

// *
// This is the action function where the specific functionality
// happens. This function fires once for each IPME socket cycle
// *
int cfmAction(Variable *f_vars, int f_NUM_VARS, int *f_varStatus, FILE
*f_CFMoutputfile){

 //printf("\n+ + + + + + + + IN CFM: + + + + + + + + ");
 //printf("\n+ + + + THESE VARS CAME OVER + + + + + ");
 int a;
 //for(a=0;a<f_NUM_VARS;a++) if(f_varStatus[a] >0) printf("\n@ @ @
@ @ @ @ @ @ @ @ >>> f_varStatus[%d]= %d <<< @ @ @ @ @ @ @ @ @ @ @ @ @",
a,f_varStatus[a]);

 l_CFMoutputfile = f_CFMoutputfile;

 if(outputFlag) fprintf(l_CFMoutputfile, "\n\nNEW ROUND OF
INTEGRATION\n+
+ + + + + + + + ");

 NUM_VARS = f_NUM_VARS;
 int errorIndex;
 integrateVarsStart = 1;
 NUM_IN_PACK = 3;

 int ivarCheck = (NUM_VARS-1)%NUM_IN_PACK;
 if(ivarCheck!=0){ printf("\nExchange Variables out of sync!\n");
exit(1); }
 numIvars = (NUM_VARS-1) / 3;

 // COPY EXCHANGE VARS TO LOCAL COPIES
 // *
* * * * * * * * * * * *
 unpackVars(f_vars, f_varStatus);

42 DRDC Toronto TM 2007-033

 // *
* * * * * * * * * * * *

 for(a=integrateVarsStart; a <= (NUM_VARS - integrateVarsStart);
a+=NUM_IN_PACK){

 //printf("\n%s.status: %d", f_vars[a].name,
ivars[a].status);

 } // end for

 // CALL CFM SPECIFIC FUNCTION HERE
 // *
* * * * * * * * * * * *
 if(outputFlag) fprintf(l_CFMoutputfile, "\n\nSTARTING INTEGRATION
ON NEW EXCHAGE VARS (clock: %f | numIvars: %d\n", clock, numIvars);

 for(errorIndex=0; errorIndex < numIvars; errorIndex++){

 if(ivars[errorIndex].status){

 //printf("\nINTEGRATING ON: ivar with index %d
(windur: %f)\n", errorIndex, ivars[errorIndex].windur);
 ivars[errorIndex].avgerror = integrate(clock,
errorIndex); // CALL integrate FUNCTION FOR EACH EXCHANGE VAR
 } // END IF STATUS IS '1'

 } // END FOR

 // OUTPUT TO FILE
 if(outputFlag) fprintf(l_CFMoutputfile, "\nINTEGRATION
COMPLETE\n");
 for(errorIndex=0; errorIndex < numIvars; errorIndex++){
 if(ivars[errorIndex].status){
 if(outputFlag) fprintf(l_CFMoutputfile,
"\tivars[%d].avgerror = %f\n", errorIndex, ivars[errorIndex].avgerror);
 }
 } // END FOR

 // *
* * * * * * * * * * * *

 // PACKAGE VARS FOR RETURN
 // *
* * * * * * * * * * * *
 packVars(f_vars);
 // *
* * * * * * * * * * * *

DRDC Toronto TM 2007-033 43

 return 1;

} // end clientFunctionModuleAction

// *
// Utility Functions
// *

// *
// here you populate the cli-scope variables using the vars table
// that came over from the ipme client interface. We are only
// interested in the IPME updated variables here.
// This is specific to each implementation of the CFM.
// *
void unpackVars(Variable *f_vars, int *f_varStatus){

 //printf("\nstarting unpack vars\n");

 int i,j,current_pack,current_ivar, integration_needed;

 // RETRIEVE clock, THE ONLY EXCHANGE VAR NOT IN A PACK (ie: VARS
THAT WORK TOGETHER)
 clock = atof(f_vars[0].value);

 // since the data comes in 3 packs (error, avgerror, windur)
 // I'm putting each set in a struct. The number of elements in my
 // array of ivars will be the total number of exchange variables
 // minus 1 (clock) divided by 3.
 // For any given integration request, there will be varying
members
 // of the ivars array that require integration, as signified by an
 // update to their value (either the error value or the WINDUR)
 // since the last integration cycle.
 current_pack=0;

 //printf("\nJust created ivar for this round, made room for %d
ivars.\n", numIvars);

 // LOOP THROUGH IVARS AND ACT UPON ALL WHOSE STATUS IS '1'
 // INDICATING THEY'VE BEEN UPDATED AND REQUIRE A ROUND OF
INTEGRATION
 for(i=integrateVarsStart; i <= (NUM_VARS - integrateVarsStart);
i+=NUM_IN_PACK){
 //printf("\nAnalysing ivar: %s for INTEGRATION
requirement...", f_vars[i].name);
 integration_needed=0;
 // create my array of ivars
 // populate local vars from exchange table

44 DRDC Toronto TM 2007-033

 if(f_varStatus[i]>0) { ivars[current_pack].error =
atof(f_vars[i].value); integration_needed=1; /* printf("\nSET %s error
to: %f\n", f_vars[i].name, ivars[current_pack].error);*/}
 //ivars[current_pack].avgerror = 0.0;
//atof(f_vars[i+1].value);
 // IF THE WINDUR CHANGES, THE STATUS SHOULD CHANGE TO SIGNAL
FOR AN INTEGRATION
 if(f_varStatus[i+2]>0) { ivars[current_pack].windur =
atof(f_vars[i+2].value); integration_needed=1; /* printf("\nSET %s
windur to: %f\n", f_vars[i+2].name, ivars[current_pack].windur); */}

 if(integration_needed) ivars[current_pack].status = 1; else
ivars[current_pack].status = 0;

 //printf(" ... ivars[%d].status is %d", current_pack,
ivars[current_pack].status);
 //printf(" ... ivars[%d].status is %d", current_pack,
ivars[current_pack].status);
 current_pack++;

 } // end for j

} // END unpackVars

// *
// Here you repopulate the returning vars values with the
// CFM values and flag them 'changed = true'
// This is specific to each implementation of the CFM.
// 'float2net' IS USED FOR THE BENEFIT OF IPME
// *
void packVars(Variable *f_vars){

 int i;
 int ivar_index=0;

 for(i=integrateVarsStart;i<=(NUM_VARS-
integrateVarsStart);i+=NUM_IN_PACK){
 //printf("\n\n\nPACKVARS:\n\tintegrateVarsStart: %d\n\ti:
%d\n\tivars[%d].avgerror: %f\n",
 //integrateVarsStart,i,ivar_index,
ivars[ivar_index].avgerror);

 if(ivars[ivar_index].status){

 f_vars[i+1].value =
float2net(ivars[ivar_index].avgerror);
 f_vars[i+1].changed = true;

 } // end if

 ivar_index++; // mode ivar index up to next one

 } // END FOR

DRDC Toronto TM 2007-033 45

} // END packVars

A.2.3 cfm.h: the cfm specific header file where generic client
information is defined

#if defined(CFM_HEADER)
/* the file has been included already */
#else
#define CFM_HEADER

// includes
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "IPME_sockets.h"

// prototypes
int cfmInit(int f_NUM_VARS, int f_outputFlag);
int cfmAction(Variable *vars,
 int f_NUM_VARS,
 int *f_varStatus,
 FILE *f_CFMoutputfile);
void packVars(Variable *vars);
void unpackVars(Variable *vars, int *f_varStatus);
void fnl(FILE *f);

#endif

A.2.4 simon_integrator.h: header file for the client-specific functions

#if defined(TRACKER_INTEGRATOR)
/* the file has been included already */
#else
#define TRACKER_INTEGRATOR

// includes
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

46 DRDC Toronto TM 2007-033

/*
* * * * */
// CLIENT SPECIFIC CODE BELOW : that which applies to THIS CFM
/*
* * * * */

// defines
#define MAX_INDEX 10000
// number of historical values possible in an integration window
#define MAX_IVARS 50
 // number of variables that will require
integration (henceforth 'ivar')
 // and therefore their own numInWindow, winDur
values
#define CURR 0 // current error index (most recent) in
the integration window
#define PREV 1 // previous error index (2nd most recent)
in the integration window

// prototypes
float integrate(float f_currentTime, int ivarIndex);

// structures
typedef struct integrateVar{
 float error;
 float windur;
 int numInWindow;
 float avgerror;
 int status;
} ivar;

// enums
enum {TIME, ERRORVAL, DT, XDT}; // 0:time, 1:coordinate, 2:deltaT,
3:extended deltaT (deltaT*coordinate)

#endif

A.2.5 params.txt:

3 # eventtime, the ipme clock time of the first communication event
3 # nexttime, the increments (relative to the interval used) of
recurring communications
4 # 0=INTERVAL_HOUR, 1=INTERVAL_MINUTE, 2=INTERVAL_SEC,
3=INTERVAL_TENTH, 4=INTERVAL_HUNDREDTH
1 # GENERATE OUTPUT FILE (`CFMOUTPUT`) 1=YES, 0=NO

DRDC Toronto TM 2007-033 47

NOTE: Only the first 4 lines of this file are read. Task specific
notes may follow
- Starting at 0.25 sec, repeating every 0.25 sec, using
INTERVAL_HUNDREDTH

A.2.6 Sharedvars.txt: demonstrating the processing of one IVAR

clock REAL_TYPE 0.0
Ivan.Perceived.AltitudeError REAL_TYPE 0.0
Ivan.Perceived.AvgAltitudeError REAL_TYPE 0.0
Ivan.Perceived.AltitudeWINDUR REAL_TYPE 0.0

48 DRDC Toronto TM 2007-033

A.2.7 List of abbreviations

CFM client function module

IPME Integrated Performance Modelling Environment

IVAR The number of variables to be processed by the client and exchanged between
the client and IPME

WINDUR The window of time over which the change in a variable is to be calculated
using mathematical integration

DRDC Toronto TM 2007-033 49

Distribution list

Document No.: DRDC Toronto TM 2007-033

 LIST PART 1: Internal Distribution by Centre:

1 Internal Library
2 Mr. Phil ter Haar
2 Mr. Brad Cain

5 TOTAL LIST PART 1

 LIST PART 2: External Distribution by DRDKIM

1 DRDKIM
1 National Archives

2 TOTAL LIST PART 2

7 TOTAL COPIES REQUIRED

UNCLASSIFIED

DOCUMENT CONTROL DATA
(Security classification of the title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the document, Organizations
for whom the document was prepared, e.g. Centre sponsoring a contractor's document, or tasking
agency, are entered in section 8.)

Publishing: DRDC Toronto

Performing: DRDC Toronto

Monitoring:

Contracting:

2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification is indicated by the appropriate abbreviation (S, C, R, or U) in parenthesis at
the end of the title)

IPME and external clients: Enhancing performance by offloading simulation workload to
external clients; explaining and simplifying the process (U)
EIMP et clients externes Amélioration des performances par délestage de la charge de
travail à des clients externes : explication et simplification du processus (U)

4. AUTHORS (First name, middle initial and last name. If military, show rank, e.g. Maj. John E. Doe.)

Phil ter Haar; Brad Cain

5. DATE OF PUBLICATION
(Month and year of publication of document.)

December 2007

6a NO. OF PAGES
(Total containing information, including
Annexes, Appendices, etc.)

51

6b. NO. OF REFS
(Total cited in document.)

1

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of document,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The names of the department project office or laboratory sponsoring the research and development − include address.)

Sponsoring:

Tasking:

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant under which the document was
written. Please specify whether project or grant.)

16BR02

9b. CONTRACT NO. (If appropriate, the applicable number under which
the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official
document number by which the document is identified by the originating
activity. This number must be unique to this document)

DRDC Toronto TM 2007−033

10b. OTHER DOCUMENT NO(s). (Any other numbers under which
may be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on the dissemination of the document, other than those imposed by security classification.)

Unlimited distribution

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the Document
Availability (11), However, when further distribution (beyond the audience specified in (11) is possible, a wider announcement audience may be selected.))

Unlimited announcement

UNCLASSIFIED

UNCLASSIFIED

DOCUMENT CONTROL DATA
(Security classification of the title, body of abstract and indexing annotation must be entered when the overall document is classified)

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract

of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph
(unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is
bilingual.)

(U) Performance of the Integrated Performance Modeling Environment (IPME) degrades
significantly when computationally demanding functions are included in a model. Much of
this degradation can be mitigated by transferring the resource intensive functionality to an
external client using the external client architecture that accompanies IPME. This client
communicates with IPME using TCP/IP network protocol, exchanging values of common
variables over the network. Using an external client allows more processing power to be
dedicated to the computationally expensive task. It is also more robust to increases in the
demands on these tasks. A computationally demanding sample client is used to show the
execution performance differences when the procedure resides within the IPME task
network and when it is offloaded to an external client. This report also outlines how to use
the sample client source code to build a client program, extending the developer’s
approach for client program development to create a more flexible interface.

(U) Les performances de l’environnement intégré de modélisation des performances (EIMP)
se dégradent considérablement lorsque des fonctions exigeant beaucoup de puissance de
calcul sont intégrées dans un modèle. Cette dégradation peut être atténuée
considérablement en transférant la fonction exigeant beaucoup de puissance à un client
externe qui utilise l’architecture de client externe connexe à l’EIMP. Ce client communique
avec l’EIMP au moyen du protocole réseau TCP/IP, échangeant ainsi des valeurs de
variables partagées par le réseau. L’utilisation d’un client externe permet de réserver plus
de puissance de traitement à la tâche exigeant beaucoup de puissance de calcul. Cela
permet aussi de mieux répondre aux augmentations de la demande visant ces tâches. Un
exemple de client exigeant beaucoup de puissance est utilisé pour faire la démonstration
de la différence sur le plan des performances à l’exécution entre une procédure résidant
dans le réseau d’exécution de tâche de l’environnement EIMP et la même procédure
transférée à un client externe. Ce rapport décrit aussi comment utiliser le code source de
l’exemple de client pour produire un programme client, ce qui étend la portée de la
démarche du développeur en matière de développement de programmes clients afin de
pouvoir créer une interface plus souple.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful in

cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name,
military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of
Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are Unclassified, the classification of each
should be indicated as with the title.)

(U) IPME; external clients; performance enhancement; human modeling; moderator; cfm;
performance prediction; TCP/IP Socket Communication

UNCLASSIFIED

www.drdc-rddc.gc.ca

Defence R&D Canada

Canada’s Leader in Defence
and National Security

Science and Technology

R & D pour la défense Canada

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

DEFENCE DÉFENSE
&

	Abstract
	Résumé
	Executive summary
	Sommaire
	Table of contents
	List of figures
	List of tables
	1 IPME and the external client
	2 IPME client socket communication
	3 Performance enhancements using clients
	4 Conclusion
	References.
	Distribution list
	DOCUMENT CONTROL DATA

